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Abstract

This essay will introduce the theory of deformations of algebras and the
appropriate related homological algebra. This essay is inspired by Murray
Gerstenhaber’s defining papers on the subject [2, 3, 4, 5] as well as Fox’s
survey on deformations of algebras [7] and is pitched at the level of a starting
graduate student. To the end of the essay we go on to study the deformation
theory of filtered and graded associative algebras and will develop a purely
cohomological condition through the deformation theory developed by Coffee
[6] to guarantee that a filtered algebra is graded.
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0 Preliminaries

Throughout this essay we will be using the following definitions and notation:

• Given a commutative ring R with unit 1 and (left) R-modules M,N,P , we say
that a map φ : M → N is R-linear if φ is a homomorphism of abelian groups
and if ∀m ∈ M and ∀r ∈ R we have φ(rm) = rφ(m). We say that a map
θ : M × N → P is R-bilinear if θ is a group homomorphism M × N → P
and if for any m ∈ M and any n ∈ N the maps θ(m,−) : N → P and
θ(−, n) : M → P are R-linear.

• We say that an algebra A over a (commutative) ring R is an R-module
with a multiplication A × A → A which distributes over the addition from
the R-module structure, and is R-bilinear. We say that A is an associative
algebra if the multiplication on A is associative, i.e. if ∀a, b, c ∈ A we have
(ab)c = a(bc). I will use the symbol 1A for the identity morphism 1A : A→ A
defined by a 7→ a for all a ∈ A.

• Given a ring R, the formal power series ring R[[t]] is an R-algebra consisting
of elements

∑
i≥0 t

iai, with addition∑
i≥0

tiai +
∑
i≥0

tibi :=
∑
i≥0

ti(ai + bi),

and multiplication∑
i≥0

tiai

∑
j≥0

tjbj

 :=
∑
m≥0

∑
i+j=m
i,j≥0

tm(aibj),

and R-action

r

∑
i≥0

tiai

 :=

∑
i≥0

ti(rai)

 ,

for all
∑
i≥0 t

iai,
∑
i≥0 t

ibi ∈ R[[t]] and all r ∈ R. Note that this is all
formal, so we don’t worry about these sums converging. Set-theoretically we
may consider R[[t]] as the set of sequences {(ai)∞i=0 | ai ∈ R ∀i ≥ 0}. In
fact, if we forget the multiplication on R[[t]] we have a R-module isomorphism
between R[[t]] and

∏
i≥0R with entrywise addition.
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1 Introduction

Before we get started properly, here is a short explanation of the structure of this
essay. There are four parts to this essay. In part 0 contains preliminary definitions
and notation.

In part 1 of this essay we will introduce the central objects of study in defor-
mation theory, deformations of algebras, and the related homological algebra for
deformations of associative algebras, namely Hochschild Cohomology.

In part 2 we also have two sections, the first of which introduces filtered and
graded associative algebras and their deformation theory over a field of charac-
teristic zero. The second section contains the main result of this essay regarding
deformations of filtered and graded algebras over a field of characteristic zero which
follows Coffee’s short paper on the subject [6].

We conclude this essay with a brief summary in part 3.

Deformations

In this section we introduce deformation theory in a hands-on context through
plenty of examples and explicit calculations to try and give a concrete idea of what
we mean when we refer to things like the deformation theory of an algebra.

Before defining deformations rigorously we will try and motivate why we should
care about deformations in the first place. One reason to study deformations of alge-
bras is to get a background understanding of deformation-quantization [8]. Physi-
cists tend to care a great deal about all things quantum, and it turns out that
the theory of deformations of algebras leads naturally to the study of deformation-
quantization. A more mathematical reason to study deformation theory is to answer
the question “how can I make a commutative algebra into a noncommutative one?”.
Deformations give us examples of this. For example, for any field k, consider the
algebra A := k[x, y]. We have xy = yx in this polynomial algebra, but what
now if we impose a new relation on A by letting xy := 2yx for example. Let us
for now denote the algebra k[x, y] with the relation xy = 2yx by the symbol A1.
ClearlyA1

∼= A/(xy − 2yx).
Once we make the proper definition of deformation we will see that A1 is an

instance of an entire family of algebras At parametrised by t ∈ k where

At := A[t]/(xy − (t+ 1)yx).

In [7] Fox introduces deformations of an algebra A as a one-parameter family
of algebras At where t varies through k such that A0

∼= A. For us this will serve as
an intuition rather than definition as we will require a stronger definition to study
deformations of filtered and graded algebras. However it is still worthwhile to have
in mind the idea that a deformation of an algebra is a family of algebras that are
parametrised by the groundfield (or groundring). I find this particularly useful to
have in mind once we start using the more useful definition, where this idea is less
obvious.

From this point onwards, unless stated otherwise, we will let k be a field and
we will let A be an algebra over k. We may say algebra rather ambiguously for
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now, but we will specify to associative algebras fairly soon. The reason we say “an
algebra” so vaguely is to let the reader know that there is a deformation theory
for algebras general types of algebras forming so called “categories of interest” [3],
which involves an abstraction into a category-theoretic setting. Such an increase
in generality comes with some loss of detail, so as stated previously we will be
considering the deformation theory of associative algebras for the majority of this
essay to get a firm idea of deformation theory. We are now ready to learn the formal
definition of a deformation of an algebra.

Definition. Given an algebra A over some field k (or for a ring viewed as an algebra
over itself), a one-parameter family of deformations or simply a deformation of
A is a family of multiplications ft on A[[t]] for some parameter t varying over k. By
“multiplication on A[[t]]” we mean a k[[t]]-bilinear map ft : A[[t]]×A[[t]] → A[[t]]
in the form of a formal power series:

ft = π + tF1 + t2F2 + · · ·

where π (also written as F0) denotes the original multiplication in A, and for each
i ≥ 1, Fi is a k[[t]]-bilinear map A[[t]] ×A[[t]]→ A[[t]].

We may also refer to the one-parameter family of deformations by the symbols
At when ft is understood, or by Af . The reason behind this alternate notation is
to emphasise that a deformation ft gives rise to a new algebra related to the given
algebra A.

We also require that a deformation satisfies the same relations as the original
multiplication on an algebra, so if A is associative/Lie/Jordan etc. then so is At.

Remark. With this definition of one-parameter family of deformations we actually
have that A is embedded in the family At by evaluating t = 0. Clearly, when t = 0
we have that f0 = π, and A[[0]] ∼= A and so A0

∼= A, coinciding with Fox’s notion
of deformation.

One may also ask why we deform the multiplication of an algebra and not some
other structure. There is no direct answer to this in the literature, however one
immediate problem would be that deforming the only other structure of an algebra,
the module structure, may result in a loss in commutativity in the addition of the
algebra and so we would no longer even have an algebra left after deformation.
Hence it makes sense for us to deform the multiplication of an algebra rather than
any other of its structures.

Example 1. To see what is meant by requiring a deformation to satisfy the same
relations as the original algebra we look at deformations of associative and of Lie
algebras here. For example, if A is an associative algebra we require ∀a, b, c ∈ A

ft(ft(a, b), c) = ft(a, ft(b, c)). (1)

If A is a Lie algebra with deformation ft we have again ∀a, b, c ∈ A

ft(a, b) = −ft(b, a) and ft(a, ft(b, c)) + ft(c, ft(a, b)) + ft(b, ft(c, a)) = 0 (2)
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We will be focusing mainly on associative algebras, however much of the theory
here holds for associative, Lie, Jordan, Poisson and Bialgebras [2], or as mentioned
earlier, any category of algebras that form a “category of interest” [3].

Note. It is no mistake that we have written ∀a, b, c ∈ A rather than “∈ A[[t]]”.
This is because we have defined our one-parameter families of deformations in terms
of sums of k[[t]]-bilinear maps Fi : A[[t]]× A[[t]]→ A[[t]] (rather than k-bilinear
maps). That is, the terms of our deformations are defined on A×A and extended
k[[t]]-linearly. Note also that once we have extended to k[[t]]-bilinear maps, we may
canonically extend further to k((t))-bilinear maps, where k((t)) the field of fractions
of k[[t]]. We make the remark now but will not need it until we define Hochschild
cohomology where k((t))-bilinearity will allow us to use vector space dimensions of
“Hochschild cohomology groups”.

At this stage it may not be entirely intuitive why deformations of algebras have
the name “deformation”. In my mind the word deformation is reserved for geo-
metric or analytical objects, which does not immediately mesh with the definition
we have above. The following examples of deformations of polynomial algebras will
establish a link between this geometric intuition of deformations, and the definition
of deformations of algebras.

Example 2. • Consider the algebra1 A := R[x]/(x2). Here we have a rather
boring spectrum with Spec(A) being a single point (x) (inside the the line
Spec(R[x]). Then let ft = π + t2F , where F (x, x) = t2 and zero otherwise.
Thus At ∼= k[x, t]/(x2−t2), and so we have that Spec(At) = {(x−t), (x+t)}
i.e. two points varying with t ∈ R, and when t = 0 then Spec(At) =
Spec(A0) becomes a single point again.

• Consider the algebra A = R[x, y]/(x2). Spec(A) is a line which we may think
of as an axis of R2. For our first one-parameter family of deformations we
have the multiplication ft on A[[t]] defined on the generators of A[[t]]×A[[t]]
to be:

ft(1, 1) := 1, ft(1, y) = ft(y, 1) := y, ft(1, x) = ft(x, 1) := x
ft(x, x) := ty, ft(x, y) = ft(y, x) = xy = yx
ft(y, y) := y2

Upon extending ft linearly we have that ft is a multiplication on A[[t]]. Writ-
ing ft in terms of a sum of R-bilinear maps we have ft = π + tF , where
F (x, x) = y and is zero otherwise. If we wish to do away with the symbol ft
altogether we may also observe that

At ∼= R[x, y, t]/(x2 − ty).

To see what this deformation does to the line we look at instances of At for
t = −1, 1

10 , 2. We see plots of the spectra of At for these values in figures
1,2 and 3.

1We work over R here so that we may draw pictures. Of course we could work over an arbitrary
field here.
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Figure 3: SpecA2

We even have that the spectrum of At when considering t as a variable gives
us the surface in figure 4:

Figure 4: Spectrum of the family At varying through t.

• Lastly we consider B = R[x, y]/(y2−x3). We see that Spec(B) is a cuspidal
cubic curve in the plane. Now instead of explicitly defining a multiplication
on B[[t]] we may simply define a deformation Bt of B by letting

Bt := R[x, y, t]/(y2 − x3 + t2x).

We can see the spectra of Bt for t = 0, 1, 2 in figures 5,6 and 7 respectively.

As in the previous example we may look at the surface given by the spectrum
of Bt in figure 8.

Hopefully these examples have clarified what deformations of algebras can look
like, and maybe even shed some intuition onto the definition of deformation. We
proceed into the abstract by showing that if we fix an algebra A, the deformations
of A form a category with deformations of A as objects and morphisms yet to be
defined.

The “a priori” definition of morphism of deformations presented next is not a
formal definition by any means, but it is supposed to look like a morphism of alge-
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Figure 8: Spectrum of the family Bt varying through t.

bras. The reasoning behind this approach for defining morphisms of deformations is
that it will motivate the more commonly used definition of algebraic automorphisms.

Definition (“A priori” defintion of morphisms of deformations). Given an algebra
A over k and deformations gt and ft of A, a morphism of deformations ft → gt is
a k[[t]]-linear map Ψ : Af → Ag which satisfies:

Ψ(ft(a, b)) = gt(Ψ(a),Ψ(b))

for all a, b ∈ A.

Remark. This definition should look just like a morphism of algebras as you have
seen before, except that almost all spaces in the definition involve formal power
series. Because of the prevalence of power series we have a particular way to express
a morphism of deformations which we investigate next. Consider Ψ : Af → Ag
as in the definition. Since we require Ψ to be k[[t]]-linear we only need to define
Ψ on elements in A (like we did in (1),(2)). So we are left to make sense of the
expression Ψ(a) for any a ∈ A. We have that Ψ(a) ∈ Ag, so we know that Ψ(a)
is a formal power series in t over A. Hence Ψ(a) = b0 + tb1 + t2b2 + · · · for some
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bi ∈ A, i ≥ 0. It should now feel intuitive to write Ψt = ψ0 + tψ1 + t2ψ2 + · · ·
where each ψi is k[[t]]-linear. In terms of the previous expression of Ψ(a) we now
have ψi(a) = bi for each i ≥ 0.

We now go further and note that for our one-parameter families of deformations
ft, gt we have that F0 and G0 are just the original multiplication on A. This should
be reflected in our definitions of morphisms too. By having Ψ0 : A0 → A0 being
the identity morphism 1A. Since Ψ0 = ψ0 it makes sense to require ψ0 = 1A. Thus
any morphism of deformations Ψt is of the form

Ψt = 1A + tψ1 + t2ψ2 + · · · .

We will now see that any such map Ψt is in fact a bijection, and will lead to the
definition of algebraic automorphism.

To show that Ψt has an inverse, we define a hypothetical inverse morphism
Φt : Ag → Af of Ψt. We will then work backwards to show that one can define Φt
purely in terms of the known components ψi.

We have Φt = 1A +
∑
j≥1 t

jφj . Thus we want to see that ΨtΦt = 1A
and ΦtΨt = 1A. Expanding the left hand sides in terms of formal power series
gives us the following:

ΨtΦt =

1A +
∑
i≥1

tiψi

1A +
∑
j≥1

tjψj


= 1A +

∑
n≥1

∑
i+j=n

tnψiφj .

Thus for ΨtΦt = 1A we require that ΨtΦt(a) = a for all a ∈ A. Expanding this
equation in terms of formal power series gives us:

a+
∑
n≥1

∑
i+j=n

tnψi(φj(a)) = a,

and so looking at the coefficients of tn we have for each n ≥ 1 that∑
i+j=n

ψi(φj(a)) = 0,

which allows us to define the φi inductively. For n = 1 we have

ψ0(φ1(a)) + ψ1(φ0(a)) = 0
⇐⇒ φ1(a) = −ψ1(a).

and so we let φ1 := −ψ1. For n = 2 we have

ψ0(φ2(a)) + ψ1(φ1(a)) + ψ2(φ0(a)) = 0
⇐⇒ φ2(a) = φ21(a)− ψ2(a),

and so we let φ2 := φ21 − ψ2.
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Continuing in this way we have for arbitrary n > 0 that

φn := −
∑
i+j=n
j 6=n

ψiφj .

This shows that we can always construct an inverse of a given morphism of defor-
mations; making every “morphism” an isomorphism. Since the underlying algebra
of both Af and Ag is the same it is common to call these maps automorphisms2

as we do now in the formal definition of equivalence of deformations.

Definition. Two deformations ft, gt of an algebra A are said to be equivalent if
there exists a formal linear automorphism Ψt : A[[t]]→ A[[t]] of the form

Ψt = 1 + tψ1 + t2ψ2 + · · ·

where ψi : At → At is k[[t]]-linear morphism for each i ≥ 1 such that for any
a, b ∈ A we have

ft(a, b) = Ψ−1t (gt(Ψt(a),Ψt(b)))

which is commonly abbreviated to

ft = gt ◦ Ψt.

We commonly abuse the notation and write Ψt : Af → Ag.
A deformation is said to be trivial if it is equivalent to the original multiplication.

Definition. An algebra is said to be rigid if all its deformations are trivial.

By now we have seen plenty of examples of deformations and have a notion
of when two deformations are the same or when a deformation of an algebra is
not much different from the original algebra. The following section introduces
Hochschild cohomology which will turn out to be an incredibly useful tool for us to
investigate deformations of associative algebras.

Hochschild Cohomology

I expect the reader of this essay to have as good a grasp of homological algebra as
I did as a first year graduate - that is to say no idea at all. Homological algebra
deserves plenty of attention in its own right and is the topic of plenty of essays,
books and indeed entire courses or entire careers in mathematics. We will first see
a brief hands-on summary of what we mean by homological algebra before quickly
specialising to the necessary branch of cohomology for deformations of associative
algebras, namely Hochschild cohomology.

Homological algebra is a method used to associate algebraic data to mathemat-
ical objects. This may be a vague statement, but the techniques and calculations
involved are not so difficult to understand. As the names suggest, homology and

2I prefer to think of this as “automorphisms of deformations” since we already have a notion
of automorphisms of algebras which are distinct to the automorphisms like Ψt : Af → Ag .
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cohomology are dual (in the categorical sense) and so we will proceed by defining
cohomology and then leave it to the reader to understand the dual theory by “re-
versing all the arrows” later (and removing the prefix ”co-” from all the objects and
morphisms we now define) if they so wish.

To define cohomology we in general take some mathematical object (for example
a group, a topological space, a sheaf of rings over a topological space etc.) and
somehow associate to it a cocomplex, which is a sequence of algebraic objects
called cochains and morphisms called coboundary operators. Cochains may form
abelian groups, algebras, R-modules etcetera, and the sequence they form is denoted
(Cn)n∈Z. We refer to Cn as the group/algebra/module of n-cochains. Coboundary
operators are denoted for each n ∈ Z by δn : Cn → Cn+1 and are homomorphisms
of the corresponding structures (so if (Cn)n∈Z are groups/algebras/R-modules, δn
are group/algebra/R-linear homomorphisms). We then require that coboundary
operators satisfy δnδn−1 = 0. This can be expressed as im δn−1 ⊆ ker δn for each
n ∈ Z. We have the following diagram to remember it all by:

· · ·
δn−2
// Cn−1

δn−1
// Cn

δn // Cn+1
δn+1

// · · · .

• The image of δn−1 is called the set of n-coboundaries, and is denoted Bn.

• The kernel of δn is called the set of n-cocycles, and is denoted Zn.

• The n-th cohomology is defined to be the quotient Hn := Zn/Bn.

Elements of Hn are called cohomology classes. The symbol H• denotes the
cocomplex (Cn, δn)n∈Z.

Remark. We will often abuse notation when referring to cohomology classes, for
example if F ∈ Zn we may refer to the “cohomology class F ∈ Hn” by which
we mean the image of F under the canonical projection Zn � Hn (given by
F 7→ F +Bn).

The most complicated part of calculating cohomologies is the initial part where
we somehow associate algebraic data to a mathematical object. The way we choose
to associate this data to a mathematical object is in general quite laborious. Thank-
fully for us, forming the Hochschild cocomplex turns out to be fairly simple.

From this point on, we require all algebras to be associative.

Definition (Hochschild Cohomology). Fix an algebra A over some field k. We
define the Hochschild cocomplex for each n ≥ 0 as:

• The set of Hochschild n-cochains is Cn(A,A) := Homk(An, A), where we
take A0 := k, and An := A×A × · · · ×A n times for n > 0.

• The Hochschild coboundary operator of this complex for each n ≥ 0 as
δn : Cn(A,A)→ Cn+1(A,A) for any F ∈ Cn as follows:
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(δnF )(a1, a2, · · · , an) := a1F (a2, · · · , an)+

n−1∑
i=1

(−1)iF (a1, · · · , aiai+1, ai+2, · · · an)+

(−1)nF (a1, · · · , an−1)an.

(Feel free to verify that δn+1δn = 0).

We will often write δ in place of δn for brevity. Note that δn is a homomorphism
of k-modules for each n ≥ 0.

The notation we use for the Hochschild n-cocycles, n-coboundaries and n-th
cohomology are Bn(A,A), Zn(A,A) and Hochn(A,A) = Zn(A,A)/Bn(A,A) re-
spectively.

We often write Hn or Hn(A,A) for Hochn(A,A) for brevity (some people
also write HHn(A,A) [8]). It is conventional to refer to Hn(A,A) as the “n-th
Hochschild cohomology group”, even though Hn(A,A) is a k-module.

Note that we keep writing Hn(A,A) rather than Hn(A). This is the conven-
tional notation for Hochschild cohomology, and for us this may be superfluous,
however in general one may wish to consider a cocomplex with n-cochains of the
form Homk(An, P ) for some algebra P , which would be denoted Cn(A,P ) (and
similarly we would have Zn(A,P ), Bn(A,P ) and Hn(A,P )).

Remark. We will now see that Hochschild Cohomology Cocomplexes have plenty
of structure. In fact H•(A,A) has a structure reminiscent of a Lie algebra.

We first define the “circle product” for any n,m ≥ 0 mapping

◦ : Cn × Cm → Cn+m−1

defined by the following rather intricate composition of cochains: for any F ∈ Cn
and G ∈ Cm we define for any (a1, . . . , an+m−1) ∈ An+m−1,

(F◦G)(a1, . . . , an+m−1) :=

n∑
i=1

(−1)(m−1)(i−1)F (a1, . . . , ai−1, G(ai, . . . , ai+m−1), ai+m, . . . , an+m−1)

(3)
We then define a so called “graded pre-Lie bracket” for n,m ≥ 0, [ , ] : Cn × Cm → Cn+m−1

for any F ∈ Cn and any G ∈ Cm as

[F,G] := F ◦G− (−1)(n−1)(m−1)G ◦ F.

Note that the circle (and therefore the bracket) both preserve coboundaries, i.e.
the circle product of two coboundaries is a coboundary, hence confirming that the
circle (and the bracket) are well-defined operations on the Hochschild cocomplex
H•(A,A).

We introduce this structure because it provides useful notation for later theory,
namely the fact that for any n-cochain F ∈ Cn(A,A) we have δF = (−1)n−1[π, F ].
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If we now consider a deformation At of A with multiplictaion ft, and wish to consider
the Hochschild cocomplex H•(At, At), we have a coboundary map which we denote
δt which can now be expressed concicely as for any F ∈ Cn(At, At) as

δtF = (−1)(n−1)[ft, F ] (4)

Do not be frightened by all this theory if you are not used to cohomology! We
will only really care about Hn for n ≤ 3. In fact for a long time only Hn for
n ≤ 3 was actually used [8]. The Lie algebra-like structure on H•(A,A) has been
introduced here in order to ease notation later through use of the bracket.

If you are still frightened by Hochschild cohomology, the following example
calculations (for Hn with n ≤ 3) should demystify the contents of the preceding
paragraphs.

Example 3. Consider an algebra A over k.

• Consider the identity map 1A : A → A. Clearly 1A ∈ C1(A,A) and so we
may calculate δ1A via evaluating at any (a, b) ∈ A2 as

(δ1A)(a, b) = a1A(b)− 1A(ab) + 1A(a)b = ab− ab+ ab = ab = π(a, b)

So taking the coboundary of the identity map on A gives us the original
multiplication on A.

• For a any 1-cochain φ ∈ C1(A,A) we have for any (a, b) ∈ A2 that:

(δφ)(a, b) = aφ(b)− φ(ab) + φ(a)b.

• For any 2-cochain F ∈ C2(A,A) we have for any (a, b, c) ∈ A3 that:

(δF )(a, b, c) = aF (b, c)− F (ab, c) + F (a, bc)− F (a, b)c.

We can also see this in terms of the bracket operation as

(π(a, F (b, c))− π(F (a, b), c))− (F (π(a, b), c)− F (a, π(b, c))) = π ◦ F (a, b, c)− F ◦ π(a, b, c)

= [π, F ](a, b, c)

• For a 3-cochain G ∈ C3(A,A) we have for any (a, b, c, d) ∈ A4 that:

(δG)(a, b, c, d) = aG(a, b, c)−G(ab, c, d)+G(a, bc, d)−G(a, b, cd)+G(a, b, c)d,

and so on.

Given a deformation ft = π + tF1 + t2F2 + · · · we have not given paid much
attention to the terms Fi other than that they are all 2-cochains, so it may well be
the case that some Fi are zero. It turns out to be very useful to talk about the
first nonzero term after π in a deformation. Not so rigorously, the more terms of a
deformation which are zero, the more trivial the deformation is. We make this clear
in 1.2 after introducing infinitesimals.
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Definition. Given a deformation ft = π + tF1 + t2F2 + · · · , the infinitesimal of
ft is the first nonzero term after π, i.e. the first Fn such that Fi = 0 for 0 < i < n.
We call n the rank of the infinitesimal.

It turns out that we know a bit more about the structure of infinitesimals than
arbitrary terms of ft as shown in the following proposition.

Proposition 1.1. Infinitesimals are cocycles.

Proof. Take a deformation ft =
∑
i≥0 t

iFi with infinitesimal Fn (i.e. F0 = π and
F1 = F2 = · · · = Fn−1 = 0 and Fn 6= 0) for some n > 0. Since ft is associative we
have for all a, b, c ∈ A that ft(ft(a, b), c) = ft(a, ft(b, c)), which when expanded
gives us the equation∑

m≥0

∑
i+j=m

tmFi(Fj(a, b), c) =
∑
m≥0

∑
i+j=m

tmFi(a, Fj(b, c)).

Upon equating coefficients of tm for m ≥ 0 we can find that we have:∑
i+j=m

Fi(Fj(a, b), c) =
∑

i+j=m

Fi(a, Fj(b, c)).

Setting m = n we have∑
i+j=n

Fi(Fj(a, b), c) =
∑
i+j=n

Fi(a, Fj(b, c)),

but since Fn is the infinitessimal of ft, the above reduces to the following:

Fn(ab, c) + Fn(a, b)c = Fn(a, bc) + Fn(b, c)

which when we move all terms to one side we get:

aFn(b, c)− Fn(ab, c) + Fn(a, bc)− Fn(a, b)c = 0 i.e. (δFn)(a, b, c) = 0,

so indeed we have that the infinitesimal is a 3-cocycle.

Remark. This result holds for deformations of Lie algebras too [2].

Every deformation except the original multiplication has an infinitesimal. Hence
an alternate way to define trivial deformation is to say that a trivial deformation
is a deformation equivalent to a deformation with no infinitesimal. We will now
see that some infinitesimals may be removed, thus reducing our deformation to a
simpler form.

Proposition 1.2. A deformation with infinitesimal equal to a coboundary is equiv-
alent to a deformation with infinitesimal of strictly greater rank (and is not equal
to a coboundary).
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Proof. Consider a deformation ft = π + tF1 + t2F2 + · · · of an algebra A with
infinitesimal Fn for some n > 0. Since we assume Fn is a coboundary, there exists
some ψn ∈ C1 such that δψn = Fn. We define the automorphism

Ψt := 1 + (−1)ntnψn

which has inverse

Ψ−1t = 1− (−1)ntnψn + (−1)nt2nψ2
n − (−1)nt3nψ3

n + · · · .

Now we express the equivalent deformation f̃t := ft ◦Ψt in terms of formal power
series as

(ft ◦Ψt)(a, b) = Ψ−1t (ft(Ψt(a),Ψt(b)))

= Ψ−1t
(
ft(a, b)− (−1)ntn(ft(a, ψn(b)) + ft(ψn(a), b)) + t2nft(ψn(a), ψn(b))

)
= ft(a, b) + (−1)ntn(ft(a, ψn(b)) + ft(ψn(a), b))− (−1)ntnψn(ft(a, b)) + (degree > n terms).

Now we expand all the ft in terms of formal power series and then consider the
whole expression ft ◦ Ψt modulo tn+1 to show that the degree n term vanishes.
Expanding the above gives:

(ft ◦Ψt)(a, b) ≡ ab+ tnFn(a, b) + (−1)ntnaψn(b) + (−1)nψn(a)b− (−1)ntnψn(ab) (mod tn+1)

≡ ab+ tn(Fn(a, b) + (−1)n(aψn(b)− ψn(ab) + ψn(a)b)) (mod tn+1)

≡ ab+ tn(Fn(a, b)− δψn(a, b)) (mod tn+1)

≡ ab (mod tn+1).

Hence the degree n term of ft ◦Ψt vanishes, giving us a deformation equivalent to
ft but with an infinitesimal with rank strictly greater than n. If the infinitesimal
of ft ◦ Ψt is a coboundary we may repeat this process increasing the rank of the
infinitesimal further. We repeat this process until we arrive at a deformation whose
infinitesimal which is not a coboundary.

The following result is a stronger version of 1.2 and is a first example of how
the second Hochschild cohomology group tells us about the deformation theory of
an associative algebra.

Corollary 1.3. If H2(A,A) = 0 then A is rigid.

Proof. The vanishing of H2 guarantees infinitesimals of deformations of A to always
be coboundaries. (Again, if you are not used to homological algebra this may not
be immediately obvious, but this is clear since infinitesimals are always cocycles by
(1.1), and H2 = 0 ⇐⇒ Z2 = B2 ) hence, given a deformations ft, we may
repeat the procedure in the proof of (1.2) to dispose of infinitesimals, showing that
ft is in fact equivalent to π, confirming that A is rigid.

This concludes our introduction to Hochschild cohomology. As mentioned ini-
tially, one can spend as much time as one wants on learning about homological
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algebra and I encourage the interested reader to do so - however for the purposes
of this essay we will only need the material presented above. We have already seen
that the second Hochschild cohomology group of an associative algebra can tell
you a great deal about its deformation theory. We bear this in mind as we now
introduce filtered and graded algebras, where we will see that the second Hochschild
cohomology group can tell us even more about the structure of a filtered associative
algebra.
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2 Deformations of Filtered and Graded Algebras

In this section we will introduce graded and filtered algebras and study their defor-
mation theory. Using the main result from [3] regarding “jump deformations” of
filtered algebras, we will follow Coffee’s paper [6] to show that a filtered algebra
over a field of characteristic zero is graded when certain conditions on its second
Hochschild cohomology group are met.

Filtered and Graded Algebras

Before we define filtered and graded algebras, we note that our favourite (read
polynomial) associative algebras k[x], k[x, y], k[x1, . . . , xn] etc. are filtered and
graded. The idea behind filtered algebras is that we have a nice grouping of elements
in these algebras, or that we can even produce a nice spanning subset of each of these
algebras. For example we can filter a polynomial algebra by grouping elements by
lower bounds on their total degree. Alternatively we may note that any polynomial
can be expressed as a sum of homogeneous polynomials from that same algebra,
thus we can write any element of the algebra as a sum of elements from simpler
subalgebras. This second idea corresponds to a grading. The processes described
above are specific to polynomial algebras, but again, the idea here is to get a
hands-on grasp of what we may mean by a filtered algebra or a graded algebra
before defining them in the abstract as we shall do next.

Definition. An algebra A is filtered if there is a chain of A-submodules3 indexed
by natural numbers4:

A = F 0A ⊃ F 1A ⊃ F 2A ⊃ · · ·

such that for any i, j ≥ 0 we have F iAF jA ⊆ F i+jA (i.e. a ∈ F iA, b ∈ F jB ⇒
ab ∈ F i+jA).

We refer to the collection (F iA)i≥0 as a filtration5 for A.
We say that a filtered algebra (or a filtration) is separated if

⋂
i≥0 F

iA = 0.

Definition. An algebra B is graded if B has a filtration (F iB)i≥0 and

B ∼=
∏
i≥0

Bi

where Bi := F iB/F i+1B for each i ≥ 0.

Remark. A separated filtered algebra is a topological space. We let A = F 0A ⊃
F 1A ⊃ F 2A ⊃ · · · be a separated filtered algebra. Letting B := {F iA | i ≥ 0}
we have that B is a basis for a topology on A, which we will call the filtration
topology.

3Here we view A as a (left) A-module.
4We index using superscripts to distinguish elements F i of filtrations (F i)i and elements

Fi ∈ C2(A,A).
5Strictly speaking, this is a “non-negative filtration” as we index over 0, 1, 2, . . .. In general

a filtration may be indexed over Z. We will keep calling the former a filtration, throughout this
essay
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In this definition of graded algebras we see that any graded algebra is filtered,
however the converse need not be true in general. We can however create a graded
algebra from a filtered one in a manner very similar to graded algebras.

Definition. Given a filtered algebra A with filtration (F iA)i≥0 we define the as-
sociated graded algebra of A to be the completion of the product:∏

i≥0

F iA/F i+1A

with respect to the topology induced by the filtration topology. The associated
graded algebra is given the symbol grA. In general we do not have A ∼= grA.

Note. Taking the completion of a topological algebra in this sense involves some
highly non-trivial theory [9] which I will not go through in this essay. There are two
main reasons for considering topologically complete associated graded rings. On is
that if a filtered ring A is complete in its filtration topology (in the sense of [9])
then A and grA are homeomorphic [4] (although we will not use this fact - but it
is a good thing to know). For the purposes of this essay we simply need to know
that there exists pathological algebras which cannot be dealt with using the theory
we present here.

The main result in Coffee’s paper [6] gives a cohomological criterion for when
a filtered algebra is isomorphic to its associated graded algebra i.e. when a filtered
ring is graded. We will now build up the theory to prove this.

Deformations of Filtered and Graded rings

Before we prove the main result we introduce an incredibly useful result from [3]
which involves so-called “jump deformations”. Roughly speaking a jump deforma-
tion is a deformation At of an algebra A in which all the algebras are isomorphic to
eachother except perhaps the original one.

Definition. A jump deformation is a deformation ft of an algebra A such that
for any two distinct t, t′ ∈ k \ {0} we have that ft and ft′ are equivalent.

Equivalently, ft is a jump deformation if we have an automorphism

Ψu,t = 1 + uψ1,t + u2ψ2,t + · · ·

such that for any t′ ∈ k there exists some u ∈ k such that

ft′ = ft ◦Ψt,u.

One way to think of jump deformations is to think of them (roughly) as trivial
one-parameter deformations of a deformation. That is, if At is deformation of A
with multiplication ft, then At is a jump deformation if there is a one-parameter
family of deformations gu of At such that gu is equivalent to ft for all u ∈ k except
perhaps when t = 0.

We now have the language to state the main result from [3]:
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Theorem 2.1 (Gerstenhaber, 1964). If A is a filtered algebra, there is a jump
deformation At of A with A1

∼= grA.

The proof of this theorem follows from a category-theoretic deformation theory
of filtered rings developed in [3] and deserves an essay for itself to justify; hence we
will take it as fact for now.

Next, we start looking at the Hochschild cohomology of the deformed alge-
bra. That is, if At is a deformation of A with multiplication ft, we now con-
sider Hn(At, At) as opposed to Hn(A,A). As mentioned after the definition of
Hochschild cohomology the Hochschild coboundary operator δt : Cn(At, At) →
Cn+1(At, At) may be expressed with the bracket notation for any G ∈ Cn(At, At)
as

δtG := (−1)n−1[ft, G].

Note that if ft = π + tF1 + t2F2 + · · · then we have

δtG = (−1)n−1
∑
i≥0

ti[Fi, G].

Given a deformation At of A, we have some specific sorts of 2-cocycles in
Z2(grA, grA), extendible ones, and jumps. The idea is that there is a correspon-
dence between extendible 2-cocycles of grA and 2-cocycles of At, and jump cocycles
of grA correspond to 2-coboundaries of At. We make the rigorous definition below:

Definition. • A 2-cocycle z0 ∈ Z2(grA, grA) is said to be an extendible
cocycle if there exists an element zt ∈ Z2(At, At) of the form zt = z0 +
tz1 + t2z2 + · · · for some z1, z2, . . . ∈ Z2(A,A). The element zt is often
called an extension.

• We refer to an extendible class as an cohomology class [z0] ∈ H2(grA, gr A)
such that z0 is extendible.

• A 2-cocycle z0 ∈ Z2(grA, grA) is said to be a jump cocycle if z0 is
extendible to a coboundary. That is, z0 is a jump cocycle if there exists some
zt = z0 + tz1 + t2z2 + · · · ∈ B2(At, At) (such that zt = δtηt for some
ηt ∈ C1(At, At)).

• We similarly have the definition of a jump class [z0] ∈ H2(grA, grA) being
a cohomology class with representative z0 being a jump cocycle.

We will denote the sets of extendible classes and jump classes of grA as
E2(grA, grA) and J2(grA, grA) respectively.

Remark. We have that B2(grA, grA) ⊆ J2(grA, grA) ⊆ E2(grA, grA). We
also note that At has underlying algebra A[[t]], which is a k[[t]]-algebra. However
we will think of At as a k((t))-algebra so as we can talk about the vector-space
dimension of At. Of course At is also a k-algebra, but this is not very helpful when
considering its dimension since dimk At is infinite.

Also remember here that any element in A corresponds to an element in gr A,
and so we may be vague about where we take the components zi from in the above
definition.
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We now introduce formal derivatives as a method to find extensions of 2-
cocycles.

Definition. Given an n-cochain ct = c0 + tc1 + t2c2 + · · · ∈ Cn(At, At). Then
the first formal derivative of ct

c′t := c1 + 2tc2 + 3t2c3 + · · · =
∑
i≥1

iti−1ci.

Iterating this we have for any n > 1, the n-th formal derivative of ct being:

c
(n)
t :=

(
c
(n−1)
t

)′
with c

(1)
t := c′t.

We even have an expression for c
(n)
t as

c
(n)
t =

∑
i≥n

(i!)ti−nci. (5)

Note. Using the formal derivative of cochains is what forces us to consider the
characteristic of the field being 0. If we were working over a field of some positive
characteristic p we would have that the whole formal derivative would disappear
after taking at most p derivatives.

Remark. We have some nice formulae for formal derivatives of the following com-
positions of cochains of an algebra A: Let Ψt = 1A+ tψ1 + t2ψ2 + · · · ∈ C1(A,A),
and ft = π + tF1 + t2F” + · · · ∈ C2(A,A). Then for any a, b ∈ A we have:

(Ψt(ft(a, b)))
′ = Ψ′t(ft(a, b)) + Ψt(f

′
t(a, b)) (6)

and

(ft(Ψt(a),Ψt(b)))
′ = f ′t(Ψt(a),Ψt(b)) + ft(Ψ

′
t(a),Ψt(b)) + ft(Ψt(a),Ψ′t(b)). (7)

Proof. For (6) we first the composition on the left hand side as

Ψt(ft(a, b)) =
∑
i≥0

tiψi

∑
j≥ 0

tjFj(a, b)


=
∑
m≥0

∑
i+j=m
i,j≥0

tmψi(Fj(a, b)),

which has formal derivative:

(Ψt(ft(a, b)))
′ =

∑
m≥1

∑
i+j=m
i≥1
j≥0

mtm−1ψi(Fj(a, b)).
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Similarly the right hand side, expressed as a formal power series, is:

Ψ′t(ft(a, b)) + Ψt(f
′
t(a, b)) =

∑
i≥1

iti−1ψi

∑
j≥0

tjFj(a, b)

+
∑
i≥0

tiψi

∑
j≥1

jtj−1Fj


=
∑
i≥1
j≥0

iti+j−1ψi(Fj(a, b)) +
∑
i≥0
j≥1

jti+j−1ψi(Fj(a, b)).

Upon comparing coefficients of these two power-series we see that (6) holds. Show-
ing that (7) holds follows by the same technique hence why the calculations are
omitted.

Proposition 2.2. Given a deformation ft = π+tnFn+tn+1Fn+1+ · · · of a filtered
algebra A, the infinitesimal, Fn, is a jump cocycle.

Proof. To show that Fn is a jump cocycle we first need to show that Fn is itself a
cocycle of A which extends to a cocycle of At with leading term Fn, and then we
need to show that the extension of Fn is in fact a coboundary. We already know
that Fn is a cocycle by 1.1. We find an appropriate 2-cocycle with Fn as its leading
term using derivatives. We have the formal derivative:

f ′t = ntn−1Fn + (n+ 1)tnFn+1 + (n+ 2)tn+1Fn+2 + · · ·

= ntn−1
(
Fn +

n+ 1

n
tFn+1 +

n+ 2

n
t2Fn+2 + · · ·

)
︸ ︷︷ ︸

gt

.

We now show that the term in brackets, gt, is an extension of Fn (i.e. that gt is a
cocycle of At with leading term Fn).

First note that we can write f ′t = ntn−1gt, and that we have the formal deriva-
tives:

(ft(ft(a, b), c))
′ = f ′t(ft(a, b), c) + ft(f

′
t(a, b), c)

and
(ft(a, ft(b, c)))

′ = f ′t(a, ft(b, c)) + ft(a, f
′
t(b, c)).

By associativity of ft we have that ft(ft(a, b), c) = ft(a, ft(b, c)), and so taking
the formal derivative of both sides of this equation gives:

f ′t(ft(a, b), c) + ft(f
′
t(a, b), c) = f ′t(a, ft(b, c)) + ft(a, f

′
t(b, c)).

Then we rewrite in terms of gt:

ntn−1gt(ft(a, b), c)+nt
n−1ft(gt(a, b), c) = ntn−1gt(a, ft(b, c))+nt

n−1ft(a, gt(b, c)),

Now gathering all terms on one side and factoring out ntn−1 gives:

ntn−1(gt(ft(a, b), c) + ft(gt(a, b), c)− gt(a, ft(b, c))− ft(a, gt(b, c))) = 0,
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which in terms of Hochschild coboundary operator δt gives us:

ntn−1δtgt(a, b, c) = 0.

Since the characteristic of k is zero and n > 0, we conclude that δtgt = 0, i.e. that
Fn is extendible.

To show that Fn is a jump cocycle we need to find some φ ∈ C1(At, At) such
that δt φ = gt. This can be done by considering the automorphism (from [3])
Φt : At → A1 which satisfies ft(a, b) = Φ−1t (f1(Φt(a),Φt(b))) for all a, b ∈ A.

To ease calculations we apply Φt to the previous equation, giving us the new
equation

Φt(ft(a, b)) = f1(Φt(a),Φt(b))

Taking the formal derivative of both sides of this equation with respect to t using
formulae (6) and (7) we have:

Φ′t(ft(a, b)) + Φt(f
′
t(a, b)) = f1(Φ′t(a),Φt(b)) + f1(Φt(a),Φ′t(b)). (8)

Noting that since the 2-cochain, f1, on the right hand side does not depend on
t so its formal derivative is zero.

Applying Φ−1t to both sides of (8) and solving for f ′t(a, b) gives us

f ′t(a, b) = Φ−1t (f1(Φ′t(a),Φt(b)))− Φ−1t Φ′t(ft(a, b)) + Φ−1t (f1(Φt(a),Φ′t(b)))

= Φ−1t (f1(ΦtΦ
−1
t Φ′t(a),Φt(b)))− Φ−1t Φ′t(ft(a, b)) + Φ−1t (f1(Φt(a),ΦtΦ

−1
t Φ′t(b))).

Since Φt is an automorphism, the first and last terms on the right hand side of the
above equation simplify to ft(Φ

−1
t Φ′t(a), b) and ft(a,Φ

−1
t Φ′t(b)) respectively, giving

us the following expression for f ′t(a, b):

f ′t(a, b) = ft(Φ
−1
t Φ′t(a), b)−Φ−1t Φ′t(ft(a, b))+ft(a,Φ

−1
t Φ′t(b)) = (δt(Φ

−1
t Φ′t))(a, b).

Hence f ′t is a coboundary of At, showing that gt is one too (since δt is k((t))-linear),
and so Fn is indeed a jump cocycle.

We now present the main results in [6].

Lemma 2.3 (Coffee 1972). If dimkH
2(grA, grA) is finite, then

dimk((t))H
2(At, At) = dimk

E2(grA, grA)

J2(grA, grA)
.

Proof. Let m := dimkH
2(grA, grA). Choose a k((t))-basis for H2(At, At) of

the form [zit], with zit = z0 + tzi1 + t2zi2 + · · · such that {[zi0] | i = 1, . . . ,m} is
k-linearly independent. Since each zi0 ∈ Z2(grA, grA) is extendible we have that

dimk((t))H
2(At, At) ≤ dimk

E2(grA, grA)

J2(grA, grA)
.

For the other inequality we consider the map E2(grA, grA) → H2(At, At)
defined by [z0] 7→ [zt] (clearly for each extendible z0 ∈ Z2(grA, grA) there by
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definitions exists zt = z0 + tz1 + t2z2 + · · · in Z2(At, At), so we can think of this
map as the map which takes extendible cocycles to their extensions). You may
check that this map is k-linear. Let θ be the linear extension of the preceding map
to k((t)). The kernel of θ is exactly J2(grA, grA) since:

ker θ = {[z0] ∈ E2(grA, grA) | [zt] = 0 ∈ H2(At, At)},

but [zt] = 0 ∈ H2(At, At) just says zt ∈ B2(At, At). Hence there exists some
φ ∈ C1(At, At) such that δtφ = zt, showing that z0 is a jump cocycle. Hence
ker θ ⊆ J2(grA, grA). It is clear that any jump class maps to zero in H2(At, At)
since the extension of a jump cocycle is by definition a coboundary. Hence by the
first isomorphism theorem we have

E2(grA, grA)

J2(grA, grA)
∼= im θ ⊂ H2(At, At)

as k((t))-modules. Note that the dimension of E2(grA,grA)
J2(grA,grA) as a k-vector space

equals its dimension as a k((t))-vector space (as the cochains in the Hochschild
cohomology of gr A do not involve t), thus establishing the other inequality:

dimk
E2(grA, grA)

J2(grA, grA)
≤ dimk((t))H

2(At, At).

Now we can finally put together all of the machinery we have developed to prove
a fundamental result by Coffee:

Theorem 2.4 (Coffee 1972). Let A be a separeted complete filtered algebra over
a field k of characteristic 0. If dimkH

2(A,A) = dimkH
2(grA, grA) and is finite,

then A is isomorphic to grA.

Proof. First we reduce the problem via 2.1 which implies that it is enough to show
that if dimkH

2(grA, grA) = dimk((t))H
2(At, At) is finite and t 6= 0 thenAt ∼= grA[[t]]

with multiplication f0.

By 2.3 we know that dimk((t))H
2(At, At) = dimk

E2(grA,grA)
J2(grA,grA) . In general we

know that dimk
E2(grA,grA)
J2(grA,grA) ≤ dimkH

2(grA, grA), since E2(grA, grA) ⊆ H2(grA, grA).

Hence this new assumption that dimkH
2(grA, grA) = dimk((t))H

2(At, At) gives
us:

dimkH
2(grA, grA) = dimk

E2(grA, grA)

J2(grA, grA)
,

which forces us to have J2(grA, grA) = B2(grA, grA). (This is clear since if
J2(grA, grA) % B2(grA, grA), then we would have a strict inequality

dimk
E2(grA,grA)
J2(grA,grA) < dimkH

2(grA, grA) contradicting 2.3).

We denote the multiplication in the deformation At by ft with infinitesimal Fn
for some n ≥ 1. We have that Fn is a coboundary, since ft is a jump deformation
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(and so represents a jump class). Hence there exists some φn ∈ C1(grA, grA)
such that Fn = δφn. Hence the automorphism Φt = 1At − tnφn gives us an auto-
morphism Φt : At → grA[[t]] where grA[[t]] has multiplication with infinitesimal of
strictly greater rank. We may repeat this procedure as we did in 1.2 to produce an
automorphism At → grA[[t]] where grA[[t]] has multiplication f0 as required.

3 Conclusion

Here ends our very quick tour of deformations of algebras. We have seen plenty of
examples of deformations, and a connection to geometry. We have seen Hochschild
cohomology and showed that calculating the second Hochschild cohomology group
of an associative algebra tells us a great deal about its deformation theory. We
have also seen how we can use deformations of algebras as a tool to develop strictly
non-deformation-theoretic criteria for showing that a filtered algebra is graded when
working over a field of characteristic zero. Working with deformations of algebras
over fields of positive characteristic is, as expected, a more cumbersome procedure
and can be explored in most of Gerstenhaber’s papers on deformation theory. The
flavour of this theory is substantially different to this essay and to my own liking and
so I have avoided including fields of positive characteristic in this essay, however I
encourage the interested reader to start with [2] and branch further at their leisure.

I hope this has been an enjoyable pedagogical short survey of deformations of
algebras, and that the reader leaves this essay with ,at the very least, a firm grasp
of how much structure there is to play with in something as nice as a polynomial
algebra.
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